Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(14): 9445-9465, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37449845

RESUMO

Tissue transglutaminase (TG2) is a multifunctional enzyme involved in the cross-linking of extracellular matrix proteins, formation of complexes with fibronectin (FN) and integrins, and GTP hydrolysis. TG2 is activated in several pathological conditions, including cancer. We recently described a novel series of ligands that bind to TG2 and inhibit its interaction with FN. Because TG2 acts via multiple mechanisms, we set out to pursue a targeted protein degradation strategy to abolish TG2's myriad functions. Here, we report the synthesis and characterization of a series of VHL-based degraders that reduce TG2 in ovarian cancer cells in a proteasome-dependent manner. Degradation of TG2 resulted in significantly reduced cancer cell adhesion and migration in vitro in scratch-wound and migration assays. These results strongly indicate that further development of more potent and in vivo efficient TG2 degraders could be a new strategy for reducing the dissemination of ovarian and other cancers.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Feminino , Humanos , Quimera de Direcionamento de Proteólise , Proteínas de Ligação ao GTP/metabolismo , Adesão Celular
2.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843555

RESUMO

Advances in genome sequencing have revitalized natural product discovery efforts, revealing the untapped biosynthetic potential of fungi. While the volume of genomic data continues to expand, discovery efforts are slowed due to the time-consuming nature of experiments required to characterize new molecules. To direct efforts toward uncharacterized biosynthetic gene clusters most likely to encode novel chemical scaffolds, we took advantage of comparative metabolomics and heterologous gene expression using fungal artificial chromosomes (FACs). By linking mass spectral profiles with structural clues provided by FAC-encoded gene clusters, we targeted a compound originating from an unusual gene cluster containing an indoleamine 2,3-dioxygenase (IDO). With this approach, we isolate and characterize R and S forms of the new molecule terreazepine, which contains a novel chemical scaffold resulting from cyclization of the IDO-supplied kynurenine. The discovery of terreazepine illustrates that FAC-based approaches targeting unusual biosynthetic machinery provide a promising avenue forward for targeted discovery of novel scaffolds and their biosynthetic enzymes, and it also represents another example of a biosynthetic gene cluster "repurposing" a primary metabolic enzyme to diversify its secondary metabolite arsenal.IMPORTANCE Here, we provide evidence that Aspergillus terreus encodes a biosynthetic gene cluster containing a repurposed indoleamine 2,3-dioxygenase (IDO) dedicated to secondary metabolite synthesis. The discovery of this neofunctionalized IDO not only enabled discovery of a new compound with an unusual chemical scaffold but also provided insight into the numerous strategies fungi employ for diversifying and protecting themselves against secondary metabolites. The observations in this study set the stage for further in-depth studies into the function of duplicated IDOs present in fungal biosynthetic gene clusters and presents a strategy for accessing the biosynthetic potential of gene clusters containing duplicated primary metabolic genes.


Assuntos
Aspergillus/química , Produtos Biológicos/química , Vias Biossintéticas/genética , Família Multigênica , Aspergillus/genética , Produtos Biológicos/isolamento & purificação , Cromossomos Artificiais/genética , Expressão Gênica , Cinurenina/metabolismo , Metabolômica , Metabolismo Secundário/genética
3.
J Chem Inf Model ; 59(10): 4460-4466, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31566378

RESUMO

MEK4, mitogen-activated protein kinase kinase 4, is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. With advances in both computer and biological high-throughput screening, selective chemical entities can be discovered. Structure-based quantitative structure-activity relationship (QSAR) modeling often fails to generate accurate models due to poor alignment of training sets containing highly diverse compounds. Here we describe a highly predictive, nonalignment based robust QSAR model based on a data set of strikingly diverse MEK4 inhibitors. We computed the electrostatic potential (ESP) charges using a density functional theory (DFT) formalism of the donor and acceptor atoms of the ligands and hinge residues. Novel descriptors were then generated from the perturbation of the charge densities of the donor and acceptor atoms and were used to model a diverse set of 84 compounds, from which we built a robust predictive model.


Assuntos
MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas
4.
ChemMedChem ; 14(6): 615-620, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30707493

RESUMO

Herein we report the discovery of a novel series of highly potent and selective mitogen-activated protein kinase kinase 4 (MEK4) inhibitors. MEK4 is an upstream kinase in MAPK signaling pathways that phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Optimization of this series via structure-activity relationships and molecular modeling led to the identification of compound 6 ff (4-(6-fluoro-2H-indazol-3-yl)benzoic acid), a highly potent and selective MEK4 inhibitor. This series of inhibitors is the first of its kind in both activity and selectivity and will be useful in further defining the role of MEK4 in prostate and other cancers.


Assuntos
Indazóis/síntese química , Indazóis/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Especificidade por Substrato
5.
J Org Chem ; 84(2): 666-678, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30550716

RESUMO

The phytotoxin diplopyrone is considered to be the main phytotoxin in a fungus that is responsible for cork oak decline. A carbohydrate-based synthesis of the enantiomer of the structure proposed for diplopyrone has been developed from a commercially available derivative of d-galactose. Key steps in the synthesis are a highly stereoselective pyranose chain-extension based on methyltitanium, preparation of a vinyl glycoside via Isobe C-alkynylation-rearrangement/reduction, and RCM-based pyranopyran construction. Crystallographic and NMR analysis confirms an earlier report that the structure originally proposed for diplopyrone may require revision. Structural analogues were prepared for biological evaluation, the most promising being a pyranopyran nitrile synthesized from tri- O-acetyl-d-galactal by Ferrier cyanoglycosidation, Wittig chain extension, and lactonization. Biological assays revealed potent antibacterial activity for the nitrile analogue against common bacterial pathogens Edwardsiella ictaluri and Flavobacterium columnare that cause enteric septicemia (ESC) and columnaris disease, respectively, in catfish. The IC50 value of 0.002 against E. ictaluri indicates approximately 100 times greater potency than the antibiotic florfenicol used commercially for this disease. Phytotoxic activity for all three target compounds against duckweed was also observed. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study demonstrate the potential of such compounds as antibiotics and herbicides.


Assuntos
Antibacterianos/farmacologia , Edwardsiella ictaluri/efeitos dos fármacos , Flavobacterium/efeitos dos fármacos , Piranos/farmacologia , Pironas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Piranos/síntese química , Piranos/química , Pironas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...